35 research outputs found

    Further results on dissimilarity spaces for hyperspectral images RF-CBIR

    Full text link
    Content-Based Image Retrieval (CBIR) systems are powerful search tools in image databases that have been little applied to hyperspectral images. Relevance feedback (RF) is an iterative process that uses machine learning techniques and user's feedback to improve the CBIR systems performance. We pursued to expand previous research in hyperspectral CBIR systems built on dissimilarity functions defined either on spectral and spatial features extracted by spectral unmixing techniques, or on dictionaries extracted by dictionary-based compressors. These dissimilarity functions were not suitable for direct application in common machine learning techniques. We propose to use a RF general approach based on dissimilarity spaces which is more appropriate for the application of machine learning algorithms to the hyperspectral RF-CBIR. We validate the proposed RF method for hyperspectral CBIR systems over a real hyperspectral dataset.Comment: In Pattern Recognition Letters (2013

    Super-resolution of hyperspectral images using local spectral unmixing

    No full text
    International audienceFor many remote sensing applications it is preferable to have images with both high spectral and spatial resolutions. On this regards, hyperspectral and multispectral images have complementary characteristics in terms of spectral and spatial resolutions. In this paper we propose an approach for the fusion of low spatial resolution hyperspectral images with high spatial resolution multispectral images in order to obtain superresolution (spatial and spectral) hyperspectral images. The proposed approach is based on the assumption that, since both hyperspectral and multispectral images acquired on the same scene, the corresponding endmembers should be the same. On a first step the hyperspectral image is spectrally downsampled in order to match the multispectral one. Then an endmember extraction algorithm is performed on the downsampled hyperspectral image and the successive abundance estimation is performed on the multispectral one. Finally, the extracted endmembers are up-sampled back to the original hyperspectral space and then used to reconstruct the super-resolution hyperspectral image according to the abundances obtained from the multispectral image

    Hyperspectral super-resolution of locally low rank images from complementary multisource data

    Get PDF
    International audienceRemote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods decrease mainly because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution via local dictionary learning using endmember induction algorithms (HSR-LDL-EIA). We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data

    On the use of the Hotelling's T2 statistic for the hierarchical clustering of hyperspectral data

    No full text
    International audienceIn this work we propose a hierarchical clustering methodology for hyperspectral data based on the Hotelling's T2 statistic. For each hypespectral sample data, the statistical sample mean is calculated using a window-based neighborhood. Then, the pairwise similarities between any two hyperspectral samples are computed based on the Hotelling's T2 statistic. This statistic assumes a Gaussian distribution of the data while hyperspectral data have been observed to be long tailed distributed. In order to improve the statistic robustness we use the Fixed Point estimates, and compare them to the classical sample mean estimator. The similarities are then used to hierarchically cluster the hyperspectral data. We give some preliminary qualitative results of the proposed approach over the Indian Pines hyperspectral scene. Results show that the use of the Fixed Point estimator does not significantly affect the clustering results. Further work will be focused on the use of the robust Hotelling statistic

    Blind hyperspectral unmixing using an Extended Linear Mixing Model to address spectral variability

    No full text
    International audienceThe Linear Mixing Model is often used to perform Hyperspec-tral Unmixing because of its simplicity, but it assumes that a single spectral signature can be completely representative of an endmember. However, in many scenarios, this assumption does not hold since many factors such as illumination conditions and intrinsic variability of the endmembers have consequences on the spectral signatures of the materials. In this paper, we propose a simple yet flexible algorithm to unmix hyperspectral data using a recently proposed Extended Linear Mixing Model. This model allows a pixelwise variation of the endmembers, which leads to consider scaled versions of reference endmember spectra. The results on synthetic data show that the proposed technique outperforms other methods aimed at tackling spectral variability, and provides an accurate estimation of endmember variability along the observed scene thanks to the scaling factors estimation, provided the abundance of the corresponding material is sufficient

    A comparison study between windowing and binary partition trees for hyperspectral image information mining

    No full text
    International audienceRemote sensors capture large scenes that are conventionally split in smaller patches before being stored and analyzed. Traditionally, this has been done by dividing the scene in rectangular windows. Such windowing methodology could provoke the separation of spectrally homogeneous areas or objects of interest into two or more patches. This is due to the presence of objects of interest in correspondence to windows' borders, or because the fixed size of the windows does not adapt well to the scale of the objects. To alleviate this issue, the windows can be arranged in an overlapping way, incurring in some data redundancy storage. Recently, tree representations have been used as an alternative to windowing in order to structure and store large amounts of remote sensing data. In this work we explore the benefits of using Binary Partition Trees (BPT) instead of windowing to store hyperspectral large scenes. We are particularly interested in storing the information resulting of local spectral unmixing processes running over a large real hyperspectral scene. We show that under similar conditions BPT allows a better storage of the unmixing information in terms of reconstruction error

    Nonnegative tensor CP decomposition of hyperspectral data

    No full text
    International audienceNew hyperspectral missions will collect huge amounts of hyperspectral data. Besides, it is possible now to acquire time series and multiangular hyperspectral images. The process and analysis of these big data collections will require common hyperspectral techniques to be adapted or reformulated. The tensor decomposition, \textit{a.k.a.} multiway analysis, is a technique to decompose multiway arrays, that is, hypermatrices with more than two dimensions (ways). Hyperspectral time series and multiangular acquisitions can be represented as a 3-way tensor. Here, we apply Canonical Polyadic tensor decomposition techniques to the blind analysis of hyperspectral big data. In order to do so, we use a novel compression-based nonnegative CP decomposition. We show that the proposed methodology can be interpreted as multilinear blind spectral unmixing, a higher order extension of the widely known spectral unmixing. In the proposed approach, the big hyperspectral tensor is decomposed in three sets of factors which can be interpreted as spectral signatures, their spatial distribution and temporal/angular changes. We provide experimental validation using a study case of the snow coverage of the French Alps during the snow season

    From local to global unmixing of hyperspectral images to reveal spectral variability

    No full text
    International audienceThe linear mixing model is widely assumed when unmixing hyperspectral images, but it cannot account for endmembers spectral variability. Thus, several workarounds have arisen in the hyperspectral unmixing literature, such as the extended linear mixing model (ELMM), which authorizes endmembers to vary pixelwise according to scaling factors, or local spectral unmixing (LSU) where the unmixing process is conducted locally within the image. In the latter case however, results are difficult to interpret at the whole image scale. In this work, we propose to analyze the local results of LSU within the ELMM framework, and show that it not only allows to reconstruct global endmembers and fractional abundances from the local ones, but it also gives access to the scaling factors advocated by the ELMM. Results obtained on a real hyperspectral image confirm the soundness of the proposed methodology

    Blind hyperspectral unmixing using an Extended Linear Mixing Model to address spectral variability

    No full text
    International audienceSpectral Unmixing is one of the main research topics in hyperspectral imaging. It can be formulated as a source separation problem whose goal is to recover the spectral signatures of the materials present in the observed scene (called endmembers) as well as their relative proportions (called fractional abundances), and this for every pixel in the image. A Linear Mixture Model is often used for its simplicity and ease of use but it implicitly assumes that a single spectrum can be completely representative of a material. However, in many scenarios, this assumption does not hold since many factors, such as illumination conditions and intrinsic variability of the endmembers, induce modifications on the spectral signatures of the materials. In this paper, we propose an algorithm to unmix hyperspectral data using a recently proposed Extended Linear Mixing Model. The proposed approach allows a pixelwise spatially coherent local variation of the endmembers, leading to scaled versions of reference endmembers. We also show that the classic nonnegative least squares, as well as other approaches to tackle spectral variability can be interpreted in the framework of this model. The results of the proposed algorithm on two different synthetic datasets, including one simulating the effect of topography on the measured reflectance through physical modelling, and on two real datasets, show that the proposed technique outperforms other methods aimed at addressing spectral variability, and can provide an accurate estimation of endmember variability along the scene thanks to the scaling factors estimation

    Binary partition trees-based robust adaptive hyperspectral RX anomaly detection

    No full text
    International audienceThe Reed-Xiaoli (RX) is considered as the benchmark algorithm in multidimensional anomaly detection (AD). However, the RX detector performance decreases when the statistical parameters estimation is poor. This could happen when the background is non-homogeneous or the noise independence assumption is not fulfilled. For a better performance, the statistical parameters are estimated locally using a sliding window approach. In this approach, called adaptive RX, a window is centered over the pixel under the test (PUT), so the background mean and covariance statistics are estimated us- ing the data samples lying inside the window's spatial support, named the secondary data. Sometimes, a smaller guard window prevents those pixels close to the PUT to be used, in order to avoid the presence of outliers in the statistical estimation. The size of the window is chosen large enough to ensure the invertibility of the covariance matrix and small enough to justify both spatial and spectral homogeneity. We present here an alternative methodology to select the secondary data for a PUT by means of a binary partition tree (BPT) representation of the image. We test the proposed BPT-based adaptive hyperspectral RX AD algorithm using a real dataset provided by the Target Detection Blind Test project
    corecore